Groups with finitely many conjugacy classes of subgroups with large subnormal defect
نویسندگان
چکیده
منابع مشابه
Nilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملGroups with Finitely Many Conjugacy Classes and Their Automorphisms
We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreover, we present several results concerning embeddings into such groups. As another application of these techniques, we prove that every countable gr...
متن کاملnilpotent groups with three conjugacy classes of non-normal subgroups
let $g$ be a finite group and $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$. in this paper, all nilpotent groups $g$ with $nu(g)=3$ are classified.
متن کاملSubgroups of Finitely Presented Groups with Solvable Conjugacy Problem
We prove that every countable group with solvable power problem embeds into a finitely presented 2-generated group with solvable power and conjugacy problems.
متن کاملOn solubility of groups with finitely many centralizers
For any group G, let C(G) denote the set of centralizers of G.We say that a group G has n centralizers (G is a Cn-group) if |C(G)| = n.In this note, we prove that every finite Cn-group with n ≤ 21 is soluble andthis estimate is sharp. Moreover, we prove that every finite Cn-group with|G| < 30n+1519 is non-nilpotent soluble. This result gives a partial answer to aconjecture raised by A. Ashrafi in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1995
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500030408